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ABSTKACT 

Minimum variance estimation requires that the statistics 
of random observation errors be modeled properly. If 
measurements are derived through the use of atomic 
frequency standards, then one source of error affecting 
the observable is random fluctuation in frequency. This 
is the case, for example, with range and integrated 
Doppler measurements from satellites of the Global 
Positioning System used for precise geodetic point 
positioning and baseline determination for geodynamic 
applications. In this paper an analytic method is 
presented which approximates the statistics of this 
random process. The procedure starts with a model of 
the Allan variance for a particular oscillator and 
develops the statistics of range and integrated Doppler 
measurements. A series of five first order Markov 
processes is used to approximate the power spectral 
density obtained from the Allan variance. Range and 
Doppler error statistics are obtained from the integra- 
tion of the corresponding autocorrelation function. 
Statistics for residuals to polynomial clock models are 
then obtained by linear transformation. Examples are 
given for rubidium and cesium clocks. 

ATOMIC CLOCK ERRORS AND FREQUENCY STABILITY 

A clock is any device which counts the cycles of a periodic phenomenon 
and among the most stable clocks in use are the atomic clocks which 
form the basis for atomic time scales such as International Atomic 
Time (TAI). Atomic time is used primarily as a measure of time inter- 
val and is based on the electromagnetic osci%lations produced by quan- 
tum transitions within the atom. The precise definition of stability 
is found in Blair (1974). Basically it is a measure, usually given 
statistically, of the random fluctuations in frequency which can occur 
in a clock's oscillator over specified periods of time. For a given 
time interval a particular oscillator is considered best if the ex- 
pected level of frequency fluctuation is a minimum in terms of the 
Allan variance defined below. 

Equation (1) is the model used to describe the types of error present 
in atomic time scales 



The deterministic errors consist of bias, drift, and ageing terms 
modeled as a quadratic polynomial in time. The ageing term is less 
observable_ for clocks whose long-term stability is good such as cesium. 
The term x ( t )  in equation ( I )  represents the random time error due to 
the integration of random fluctuations in frequency: 

The magnitude of this term depends on the stability of the clock and on 
the interval of time which has passed since the scale was reset or 
calibrated. 

Hellwig (1977)  points out that "the characterization of the stability 
of a frequency standard is usually the most important information to 
the user especially to those interested in scientific measurements and 
in the evaluation and intercomparison of the most advanced devices 
(clocks)." Since the frequency stability of a standard depends on a 
variety of physical and electronic influences both internal and exter- 
nal to the standard, measurement and characterization of frequency 
stability are always given subject to constraints on environmental and 
operating conditions. In addition frequency stability depends on the 
exact measurement procedure used to determine stability. 

Frequency stability characterization is done in both the frequency and 
time domain. In the time domain a frequently used measure of stability 
is the Allan variance or its square root. In the frequency domain it 
is the power spectral density. 

The Allan variance as a time domain measure of frequency stability is 
found especially useful in practice since it is obtainable directly 
from experimental measurements and contains all information on the 
second moments of the statistical distribution of fractional frequency 
error. The Allan variance is defined as follows: let yo, yl, y2, . . 
., yk, Y ~ + ~ ,  . . . be observed fractional frequency errors separ- 
ated by a repetition interval of T seconds. For each integer N greater 
than or equal to 2, calculate y from m 



This is an average over N consecutive values of y The Allan vari- 
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k' 
ance, oY(N), is then obtained f rorn the averages y by m 

An examination of this equation reveals that the Allan variance for a 
particular sampling interval NT is the average two-sample variance of 
the y",(N). 

For frequency standards the square root of the Allan variance is usual- 
ly given in graphical form on a log-log scale. For individual classes 
of frequency standards models for the Allan variance are used which 
portray general frequency stability characteristics. Hellwig (1975) 
gives examples of such models for many oscillator types. Figure 1 
shows the typical form. In this form, u (r) is the square root of the 
Allan variance for the sample interval I.' The quantity u is called f 
the flicker floor and T t t are the break points of the plot. The 

1 ' constants associated wlth ?&is3 figure are usually specified for each 
type of frequency standard. A comparison of such information can 
facilitate the selection of a frequency standard for a specific appli- 
cation. 

The stability characteristics shown in the three regions of Figure 1 
are typically present in many Allan variance plots of specified oscil- 
lator performance. The first part, region I, reflects the fundamental 
noise properties of the standard. This behavior continues with in- 
creased sampling time until a floor is reached corresponding to region 
11. After r2  the performance deteriorates with increased sampling 
time, Hellwig (1977) outlines the error sources corresponding to each 
portion of the graph. The magnitude and slope of each segment will 
depend on the particular category of standard. 

An alternative procedure for specifying the stability of a frequency 
standard, in the frequency domain, is the use of the power spectral 
density (PSD) of instantaneous fractional frequency fluctuations y(t). 
Allan et al. (1974) have given a useful model to represent the PSD for 
various categories of frequency standards. This model is in the form 
of a power law spectral density having the form 

j ( : j a  o s w 5 w  s (w) = h 
YY 0 u ) > W  

h 

where a takes on the integer powers between -2 and 2 inclusive depend- 
ing on how the interval (0,w ) is to be divided into subintervals, one 

h 
for each a to be used. The quantity h is a scaling constant, and the 

01 
PSD is assumed to be negligible beyond the frequency range ( O , % ) .  
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Fig. 1-General frequency stability characteristics 

Barnes et a1 (1971) and Meditch (1975) give the transformations between 
the time domain measures of frequency stability in the form of the 
Allan variance and the power law spectral densities. Table 1 taken 
from Meditch gives these conversions for three types of fractional fre- 
quency error sources. 

Table 1-Allan variance and power spectral 
density for common error sources 
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RANGE AND DOPPLER OBSERVATION ERRORS DUE TO RANDOM ATOMIC CLOCK ERROR 

As previously discussed, an atomic clock's time scale can be expected 
to differ from ideal time due to both deterministic and random errors. 
The random component is due to integration of fractional frequency 
errors. A range observation determined from radio signals broadcast by 
a satellite is subject to the random errors of the frequency standards 
in both the satellite and the tracking receivers. The effective range 
error at time t due to the timing error in one of the time scale is 

with the random component being the random walk 

where c is the velocity of light. The random component is due to the 
accumulated effect of fractional frequency error since the clock's 
start or reset at t . 

s 

The random error rl.(t) is correlated in time. Consider two measure- 
ments of range ~(t?) and R ( t  ) based on the use of the oscillator in k 
the satellite, and assume momentarily that the receiver's oscillator is 
free from random error. The covariance between these measured ranges 
due to correlated fractional frequency error in the satellite oscil- 
lator is 

where 4 (t - 1') is the autocorrelation function for fractional fre- 
YY 

quency error y(t) defined by 



The function f(y,y',r,tP) is the joint probability density function for 
fractional frequency error. Here it is assumed that y(t) is a mean 
zero stationary random process. The function $ (t - - c - )  collld be 

YY . . 

obtained by the inverse Fourier transform of the given power spectral 
density S (w) : 

YY 

whore 

t = t - t'. 
An alternate procedure for obtaining the autocorrelation function 

(t) from the Allan variance is given below. 
YY 

The variance of a range observation is obtained from equation (8) by 
setting t equal to t 

j k : 

The presence of random frequency error in the receiver oscillator 
introduces additional, but similar, terms into equations (8) and (11) 
which must be considered when assessing the range uncertainty due to 
all random clock errors effecting the measurement. 

For integrated Doppler or range difference observations the random 
measurement error associated with system clocks is the integral of 
fractional frequency error over the Doppler integration interval. The 
random error in range difference due to one oscillator is 



Not ice  i n  e q u a t i o n  (12) t h a t  t h e  random e r r o r  q .  i s  a function of t. 
1 j 1 ' 

t., and y ( t ) .  The e r r o r  does n o t  depend on t . Range d i f f e r e n c e  
J S 

rnkasurements have t h e  f o l l o w i n g  c o r r e l a t i o n  f o r  each o s c i l l a t o r  

w i t h  t h e  v a r i a n c e  

Observe that:  t he  random range d i f f e r e n c e  e r r o r s ,  whose s t a t i s t i c s  a r e  
g i v e n  by e q u a t i o n s  (13) and ( 1 4 ) ,  a r e  s t a t i o n a r y ;  however, random range 
e r r o r s ,  whose s t a t i s t i c s  a r e  given by e q u a t i o n s  (8) and (11), a r e  n o t .  
A s t a t i o n a r y  random p r o c e s s  i s  one whose s t a t i s t i c s  a r e  i n v a r i a n t  i n  
t ime  . 

For t h e  o s c i l l a t o r  performance s p e c i f i c a t i o n s  shown i n  F i g u r e  2 exam- 
p l e s  of t h e  c o n t r i b u t i o n  t o  the  range e r r o r  a r e  given f o r  b o t h  o s c i l l a -  
t o r s  i n  F i g u r e s  3 and 4 over  a f i v e - d a y  span .  The c l o c k s  a r e  assumed 
t o  be p e r f e c t  i n i t i a l l y .  Also inc luded  i s  t h e  s t a n d a r d  e r r o r  f o r  t h e  
random w a l k  q ( t )  o b t a i n e d  u s i n g  e q u a t i o n  (11). The procedure  used i n  
s i m u l a t i n g  t h e  random range e r r o r  i s  d i s c u s s e d  i n  Meditch ( 1 9 7 5 ) .  
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Fig. 3-Standard error and random range error 
based on receiver cesium specifications 
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RANGE AND DOPPLER OBSERVATION ERROR STATISTICS 

Fractional Frequency Autocorrelation from the Allan Variance 

The equations giving the second order statistics of random range and 
integrated Doppler observation errors due to random fractional fre- 
quency errors were presented in the last section. Those equations 
require that the fractional frequency autocorrelation function be 
known. In this section discussion of a procedure for obtaining an 
analytic approximation to this function from the Allan variance is 
given. This method yields a simple analytic autocorrelation function 
and avoids numerical difficulties that may arise when the inverse 
Fourier transform of the power spectral density is evaluated. 

The A l l a n  variance models shown in Figure 2 for the satellite rubidium 
and receiver cesium oscillators are a function of the sampling time t 
having the form 

Using the transformations in Table I the power spectral density for 
fractional frequency may be developed from equation (15): 

The square roots of the power spectral densities corresponding to the 
A l l a n  variance specifications of Fi.gure 2 are given in Figure 5. The 
constants associated with the two furlctions and the formulas for 
computing the constants associated with the power spectral. density 



function based on the Allan variance are given in Table 2. These for- 
mulas are developed from the transformations of Table 1. 

The autocorrelation function 4 (t) can be obtained from the power 
YY 

spectral density using equation (10) 

However, as a result of transforming the band limited white noise 
portion of the spectrum, this form for the autocorrelation function has 
an oscillatory behavior for small t. This is an artificiality of the 
model. 

SATELLITE 
CLOCK (RUEIOIUU) 

I 1 

fo-? 10-' i d s  i d '  r 0-' t d c  16' 
FREQUENCY W SEC-') 

Fig. 5-Square root of PSD 

An alternate approach for obtaining an autocorrelation function is to 
approximate the power spectral density model with a smooth function 
whose autocorrelation is expressible in simple analytic form. The 
first step in this development is to approximate the flicker noise 



Table 2-Oscillator parameters 

SATELLITE CLOCKS RECEIVER CLOCK 
UNITS FORMULA QUANTITY - IRUBIDIUMI (CESIUM) 

' 2 sec 1.oox1o5 1  . O O X I O ~  

sec 1.00~10" 

sec  ' 1 .73~10  

No s e c  r l ~ ~ t 2  3 . 6 0 ~ 1 0  " 9,00X10 23 

N~ ~rof2/2 In 2  8 . 1 6 ~ 1 0  25 2 . 0 4 x 1 0 ~ ~ ~ '  

N2 sec ' 3o,2/rZ I 08x10 " 2 . 7 0 ~ 1 0 . ~ ~  

N3 sec o ~ ~ - ~ ~ / T ~  3 6 0 ~ 1 0  l 8  9 00x1 0  

segment of the spectrum by a series of cascading functions whose values 
alternate between being constant and being inversely proportional to 
the square of the frequency. This type of procedure is described by 
Meditch (1975)  in constructing a I . inea r  system which simulates flicker 
noi.se using a white noise input. Figure 6 shows the transfer function 
for flicker noise. A three stage cascading transfer function is super- 
imposed consisting of the functiorls F , FB, and FC which are defined in 
Table 3. These functions arc define4 to have the required properties 
and give a continuous although not smooth approximation to the flicker 
noise power spectral density. 

The constants of this approximation are now derived over frequency 
intervals as given in Meditch ( 1 9 7 5 ) .  The general form of the function 
F is 

A 

F (w) = - 
A 

w  
2 
a 

between the frequencies w and uw . At frequency w defined in 
a a Table 2, the function FA takes on the value a ' 
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Fig. 6-Three stage transfer function approximation 
of flicker noise spectrum 

Table 3-Definition of three stage transfer function approximation 

FUNCTION INTERVAL DEFINITION IPSDI 

3: 5. N , / C ~ , ~  

FA w :: j L ,  ::: ,,<<> a .  N ~ I W '  

UW r I" .>: rn N A 1 ~ 2 ~ , a Z  

WHERE 



since the flicker noise power spectral d e n s i t y  has the same function 
value at frequency w Solving equation (18) gives 

1 ' 

A similar analysis gives t h e  constant N B ' The function F B has t h e  form 

L 
At frequency a w F has  t h e  function value 

a '  B 

2 
since at cl u, the function F has t h e  same value a s  function F at 

a  A 
frequency au, (see Figure 6) B Solving equation ( 2 1 )  and using equa- 

a 
Lion (19) 

For the function F 
C ' 

N~ 
F (w) = - 

C 
U) 

2 

4 
its function value at frequency u u, equals the v a l u e  of F at f re -  

a B 
3 

quency a w giving 
a 

I Using equation (22) gives the solution 



Numerical values for a and w are given in Table 2. The power spectral 
density consisting of the tgree cascading functions and the remainder 
of the original function will be denoted as the second power spectral 
density model for each oscillator. 

The next step in the development of a simple analytic autocorrela- 
tion function is to approximate various segments of this second model 
with a first order Markov process power spectral density function, a 
function of the form 

where f3 is the inverse of the correlation time (see Gelb (1974)). The 
autocorrelation function for a first order Markov process is 

Notice in equation (26) that the power spectral density decreases as 
the inverse of the square of the frequency. This is the type of func- 
tional behavior seen in the interior of the cascading functions 
F through F It is also the behavior of the original power spectral 

A .  density in &e interval (e O, wl). In addition the power spectral 
density of the Markov process remains virtually flat until the fre- 
quency reaches a point at which the function decreases rapidly. These 
properties make this function an excellent choice for approximating the 
second power spectral density model piecewise. 

The second model is then divided into five segments defined in Table 4 ,  
- 1 

The high frequency cut off w shown as 10 in Figure 5, will be in- 
h ! 

creased so that the band limited white noise component of the power 
spectral density may be approximated better by the first order Markov 
power spectral density. 

Table 4-Division of second PSD model for Markov process approximation 

NOTATION INTERVAL 



The approximation consists then of fitting a function in the form of 
equation (26) to each subdivision of the second model S' (LU) given in 

YY 
Table 4. There are two parameters o and B to be determined for each 
segment giving a total of ten parameters. 

The procedure which was adopted was an asymptotic approximation whereby 
two constraints were imposed on the Markov power spectral density 
function giving a and directly. This procedure was implemented 
because of simplicity and because the results compared favorably with a 
least squares approach. The asymptotic approach develops an approxima- 
tion on the interval I. 

J ' 

using the following constraints: 

(i) at zero frequency the approximating Markov power spectral 
density equals the second model at frequency LLJ 

k: 

(ii) in the limit as w increases the value of the function S.(w)  
converges to the following function J 

lim S.(w) = & 
w -+ m3 UI 2 

and at u, this limiting value i s  set equal to the value of S' ( w ) :  R YY 

Equations (28) and (30) are a system of two equations in two unknowns. 
Their solution yields the parameters a. and @ for the approximating 

J j 
Markov power spectral density function S.(UJ). The nature of the second 

J 
constraint, equation (30), is to force the function S.(w)  to asymptoti- 

J 
cally approach S *  (w) at I U ~ .  The first constraint is necessary to ap- 

YY 
proximate the white noise or flat component of S '  (w) at the beginning 
of each subinterval, YY 

Finally a comment concerning the approximation in the last subdivision 
I is necessary. In order to obtain a good approximation to S '  (w) in 

5 YY 
that interval it is necessary to choose UJ large enough to allow the 

h 



flat portion of the Markov process spectral density to fit the white 
noise component which dominates this interval (see Figure 5). Choosing 
LU three or four orders of magnitude larger than 0.1 and S '  (wh) two or 
h w " " 
three orders of magnitude smaller than N enables a good approximation 

0 ' to be made but adds power at these higher frequencies. The result is 
an autocorrelation function which tends to a delta function as w 

h goes to infinity and whose variance increases as u, is chosen larger 
h (see Figure 7). However, this will have negligible effect on range 

and range difference statistics. 

The smooth fractional frequency autocorrelation function @ (t) is 
YY 

given by the inverse Fourier transform of the five Markov process power 
spectral densities S . ( w ) .  The result of each transformation is an ana- 
lytic function whoseJform is given by equation (27). The final result 
is the sum of these functions 

For range and integrated Doppler observations the statistical contribu- 
tion due to random oscillator error is obtained using equation (31)  in 
equation (8) through (14). 

Figures 8 and 9 show the original transfer functions and the asymptotic 
approximati.ons. The parameters obtained using this approximation 
procedure are given in Table 5. 

Observation Error Statistics Based on Markov Process Approximations 

The first order Markov autocorrelation function, equation ( 3 1 ) ,  and 
equations (8) through ( 1 4 )  give the second order statistics for random 
range and integrated Doppler observation errors due to each oscilYator 
used in the measurement process. These integrals may be evaluated 
giving analytical expressions for the variance and covariance of range 
and Doppler observations. 

Let R ( t . )  and R(t ) be range observations subject to one random clock 
1 k 

error only. The covariance between the observations is given by equa- 
tion (8). Using the first order Markov approximations, the integration 
of equation ( 8 )  gives the covariance as 
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Fig. 7-Asymptotic fractional f r equency  autocorrelation 
functions based on Markov process approximations 

Fig. 8-Satellite oscillator transfer function and sum 
of asymptotic approximations 
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Table 5-Fractional frequency autocorrelation function 
parameters for Markov process approximations 

OSCILLATOR TYPE 

RUBIDIUM (SPEC) 

CESIUM (SPEC) 

INTERVAL 

11 

I2 

13 

I4 

'6 

11 

12 

'3 

I4 

15 

ASSYMPTOTIC LEAST SQUARES 

IALPHAP - BETA - (ALPHAP - BETA - 
3.1177~10-" 1.732~10-~ 3.3719~10-*' 1.681~10 -6 

6 .2625x10~~ 2.032X10 7 .6238~10-~~  2.2SX10 -5 

6 .2625~10-~~ 1.128~10-~ 7.624Kx10-*~ 1.252~10--' 

6.2625x10- 25 6.262~10-~ 7 .6245~10-~  6.947~10-.' 

1.8000~10-'~ 1.000~10~' 1.9343~1 0-l9 9.631xld' 

7.7942X10 -27 1.732~10-' 

1.2922~10-~' 1.677~10-~ 



for t greater than ti, where ts is the start or reset time of the 
clockk The variance of the random range error is obtained by setting 
t equal to ti in equation (32) 
k 

The range error ~ ( t )  resulting from the integration of fractional 
frequency error y(t) is a statistically nonstationary process. An 
examination of equations (32) and (33) reveals terms which are func- 
tions of t, , or t minus t . Thus, for instance, the variance in- 
creases with time. k'~his in alustrated in Figure 10 for the rubidium 
clock. The standard error of a range measurement based on the use of 
this clock is given for 20 range observations spaced at 15-minute 
intervals starting five minutes, one hour, and five hours after the 
start of the clock. The increase in variance is almost linear. An 
examination of the autocorrelation function shows that this function, 
dominately flat, is similar to a random bias having a constant auto- 
correlation and whose integral is a random ramp which increases exactly 
linearly. Hence a linear growth in variance is expected as seen in 
Figure 10, The correlation coefficients p between the first and the 

1 i 
i'th range observation in each of these sequences are given in Fig- 
ure 11. As the starting time of the sequence increases from t SO s ' 
does the correlation among the random errors. This again is expected, 
since the variance increases with time and the errors are correlated. 

Figure 12 gives the autocorrelation function for the cesium clock based 
on the Markov process approximation and Figures 13 and 14 give the 
standard error and correlations of range errors based on this clock. A 
comparison of Figures 10 and 13 reveals the greater stability of the 
cesium clock. After ten hours of operation the standard error of the 
cesium clock output is approximately 3.5 nanoseconds compared to 63 
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Fig. 10-Standard error of range observations 
based on satellite rubidium oscillator 
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Fig. 11-Correlation coefficients between range 1 
and range i (rubidium clock) 



Fig. 12-Asymptotic fractional frequency autocorrelation 
f u n c t i o n  for cesium standard 

C - 
i H R  

- B 
a I T O  T S -  5 MIN 

- - . - - -. - 7- 7 

0 

0 no 3 o n  b U U  9 u n  ' 2  U O  l 1  OIl 2 1 1 1 0  24 [1 ' 1  

NUMBFR 01 15 MINUTE R A N G F S  

Fig. 13-Standard error of range observa t ions  
based on cesium oscillator 
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Fig. 14-Correlation coefficients between 
range 1 and range i (cesium clock) 

nanoseconds for the rubidium standard. In addition, the correlations 
among the cesium clock errors decrease more rapidly than the rubidium 
clock errors. Considering both random clock error sources the total 
variance and correlation of range observations R (t ) and R (t ) meas- 
ured by receiver k are given by the equations k i k j 

where the variances and correlations of the random error q are given by 
equations (32) and (33). The subscript "s" refers to the satellite 
rubidium clock. 

For simultaneous observations of range by two receivers the covariance 
of the observations Rk(ti) and R (t ) is given by 

Q j 

In the above equations the random errors q have zero mean which :is a 
consequence of fractional frequency error being zero mean. 

L e t  AR(t ) be an integrated Doppler or range difference measurement 
over theninterval (ti, t ) and AR(te) a similar measurement from the n 



same r e c e i v e r  over  t h e  i n t e r v a l  ( t  k ,  t R ) .  The covar iance  of t h e  obser -  
v a t i o n s  i s  

E[hR(tn),  m ( t Q ) l  = E [ ~ ( t n )  - r l( tQ) - ~ ( ~ ~ 1 1  

= E [ q ( t n ) q ( t , ) l  - Elr l ( tn )q( t , ) l  - EIq( t i ) r l I tu)1  

+ E [ r l ( t i ) ~ ( t k ) l  

5 -B j  ( t e  - t n )  -B j  ( t k  - t n )  
= c2 2 - e 

j = 1  

- P j ( t Q  - t i )  - B j ( t k  - t i )  
- e  f e 

The v a r i a n c e  of a  range d i f f e r e n c e  o b s e r v a t i o n  i s  g iven  by 

5 -P j  ( t n  - t i )  

Equa t ions  ( 3 7 )  and (38) a r e  independent of t h e  c l o c k  epoch t . The 
S 

s t a t i s t i c s  of t h e  range d i f f e r e n c e  e r r o r  depend o n l y  on t h e  Doppler 
i n t e g r a t i o n  i n t e r v a l  o r  t h e  t ime d i f f e r e n c e  between o b s e r v a t i o n s .  Thus 
t h e  random range d i f f e r e n c e  e r r o r  i s  s t a t i o n a r y .  Express ions  analogous 
t o  e q u a t i o n s  (34) t h r o u g h  (36) express  t h e  complete s t a t i s t i c s  of range 
difference o b s e r v a t i o n  e r r o r s  f o r  i n d i v i d u a l  o r  s imul taneous  observa-  
t i o n s  due t o  c lock  e r r o r .  

STATISTICS OF RESIDUALS TO POLYNOMIAL CLOCK MODELS 

The s t a t i s t i c a l  c h a r a c t e r i s t i c s  of f r a c t i o n a l  f requency e r r o r  and i t s  
i n t e g r a t e d  e f f e c t  on range arid Doppler o b s e r v a t i o n s  have been d i s c u s s e d  
i n  d e t a i l .  For  range o b s e r v a t i o n s  assume t h a t  t h e  t o t a l  random e r r o r  
i s  due t o  t h r e e  s o u r c e s ,  two o f  which  a r e  c o r r e l a t e d  n o i s e  p r o c e s s e s .  
Then t h e  t o t a l  random range e r r o r  i s  expressed  a s  

Tl(t) = r ls(t)  + q k ( t )  ' f ( t )  (39)  

where q  and qk are t h e  c o r r e l a t e d  random range e r r o r s  d u e  t o  s a t e l -  
l i t e  an% receiver random c lock  e r r o r s  r e s p e c t i v e l y .  The quan t i - ty  5 
r e p r e s e n t s  r e c e i v e r  w h i t e  noi.se. The t o t a l  i .n tegra ted  Doppl.er random 
e r r o r  over  the i n t e g r a t i o n  i n t e r v a l  [t.,t ] i s  

J Q 

nw,) = v S ( t , )  - q s ( t . )  + v k ( t Q )  - q o- + i 
J k j  I? 

( 4 0 )  



where Cg is the white noise associated with the Doppler measurement 
procedure. 

Depending on the stability of the clock, the random range or Dap- 
pler error components, qs(t) and ( )  may appear quite systematic 
over fixed time intervals and may be represented by polynomial models 
of varying degree. For short time intervals the models for clock error 
were taken to be a bias and drift for range observations and a frequen- 
cy bias for Doppler observations. llowever, these models and even 
higher order polynomial models are not sufficient to entirely represent 
this correlated error. Thus knowledge of the statistical properties of 
the deviations of the error from such a model becomes important, as 
these residuals represent an unmodeled part of the observation equation 
after the inclusion of the polynomial model. 

Proceeding, equation (39) is expressed as follows 

where Pms(t) is an mtth degree polynomial chosen to model the correlat- 

ed random error r l  (t) and P (t) is an ntth degree polynomial model- s nk 
ing the random process 11 (t). The statistics of the range residuals 

k r(t) may be devel.oped from the covariance of the random clock errors. 
The second order statistics of the range residuals r(t) to a polynomial 
model are obtained as 

where 

and A is the least squares design matrix for the polynomial model 
m 

selected. The E[R(~)R'(~)] is the covariance matrix of the random 
clock error being modeled. This covariance is given by equations (32) 
and ( 3 3 ) .  

For integrated Doppler observations the statistics of the residua1.s to 
a given degree polynomial model are similarly obtained from equations 
(42) and (43), using the covariance matrix for integrated Doppler 
random error due to each system clock, equations (37) and (38). The 
equation may be written as 



where t h e  m a t r i x  H i s  s i m i l a r  t o  t h e  m a t r i x  G o f  e q u a t i o n  (4.3) w i t h  
changes  due t o  t h e  c h o ~ c e  of  t h e  model adop ted  f o r  c l o c k - i n d u c e d  random 
Doppler  e r r o r s  

A f t e r  t h e  s e l e c t i o n  o f  t h e  polyrlomial model ,  ftquat-ion ( 4 0 )  h a s  thc form 

If t h e  s t a t i s t i c s  o f  t h e s e  r e s i d u a l s  were i g n o r e d  i n  a n  e s t i m a t i o n  
p rob lem,  t h e n  t h e  r e s u l t i n g  p a r a m e t e r  c o v a r i a n c e  m a t r i x  would be o p t i -  
m i s t i c .  An i n c r e a s e  i11 t h e  d t?grees  o f  t h e  po lynomia l  c l o c k  models  would 
o f f s e t  t h i s  opt imism t o  some e x t e n t  s i n c e  t h e  l e v e l  of  umriodeled e r r o r  
would be  d e c r e a s e d .  However, i f  a r i g o r o u s  e s t i m a t - i o n  i s  t o  be p e r -  
formed,   the:^ t h e s e  r e s i d u a l .  s t a t i s t i c s  must h e  i n c l u d e d  i n  t h e  we igh t  
m a t r i x  t o  a c c o u n t  f o r  t h e  unmodftled e r r o r  r ( t )  o r  A r ( t . )  i n  a s t a t i s t i c -  
a l  r a t h e r  t h a n  p a r a m e t r i c  f a s h i o n .  The e s t i m a t i o n  a l g o r i t h m  s h o u l d  
then p roduce  a  v a l i d  p a r a m e t e r  c o v a r i a n c e  m a t r i x  r e g a r d l e s s  o f  t h e  
o r d e r  o f  t h e  po lynomia l  models  u s e d  p r o v i d e d  nunler ica l  problems a r e  n o t  
e n c o u n t e r e d  and t h e  p a r a m e t e r s  a r e  i ndependen t  and w e l l  o b s e r v e d .  

F i n a l l y ,  t h e  t h e o r e t i c a l  s t a n d a r d  e r r o r s  f o r  r ange  r e s i d u a l s  t o  a  
l i n e a r  f i t  were  de term-ined  u s i n g  e q u a t i o n  (42 )  f o r  t h e  rub id ium and 
ces ium c l o c k s .  The r e s u l t s  a r e  g i v e n  i n  F i g u r e s  15 and 1 6 .  These  
f i g u r e s  g r a p h i c a l l y  d e m o n s t r a t e  t h a t  t h e  s t a t i s t i c s  o f  Lhe r e s i d u a l s  t o  
t h e  c l o c k  rnodel.ing poJ.ynomia1 a r e  n o t  s t a t i o n a r y .  The v a r i a n c e  o f  a  
r e s i d u a l  depends  on t h e  o r d e r  o f  t h e  polynomial . ,  t h e  i n t e r v a l  l e n g t h  
and t h e  l o c a t i o n  w i t h i n  t h e  sample .  However, t h e  s t a t i s t i c s  o f  t h e  -- 

r e s i d u a l s  w i l l  be c o n s t a n t  from i n t e r v a l  t o  i n t e r v a l  o f  t h e  same l e n g t h  
p r o v i d e d  t h e  sampl ing  i s  per formed e q u i v a l e n t . 1 ~  and  t h e  same o r d e r  
po lynomia l  i s  u s e d .  
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NUMBER O F  S A M P L F S  

Fig .  15-Standard error of satellite rubidium 
clock residuals based on a linear fit 

N U M B E R  O F  S A M P L E S  

Fig. 16-Standard error of cesium clock 
residuals based on a linear fit 
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QUESTIONS AND ANSWERS 

DR. KARTASCHOFF : 

I have j u s t  one q u e s t i o n  t h a t  you have been remode l i ng  t h e  f l i c k e r  
n o i s e  l e v e l  w i t h  these  f i v e  processes,  and I was a s k i n g  m y s e l f  now 
when I hear  i t  what do you t h i n k  abou t  if one j u s t  c o u l d  use d i r e c t -  
l y  t h e  t i m e  i n t e r v a l  e r r o r  e s t i m a t i o n ,  as I had shown j u s t  b e f o r e ,  
a1 so f o r  e s t i m a t i n g  t h e  range e r r o r ?  

Fur thermore,  one c o u l d  t r y  t o  e s t i m a t e  t h e  u n c e r t a i n t y  o f  t h a t  
e s t i m a t i o n  by u s i n g  t h e  u n c e r t a i n t y  o f  t h e  A l l a n  v a r i a n c e  u s i n g  t h e  
t h e o r y  o f  Audoin-Lesage t h a t  l i m i t e d  t h e  sample t h a t  we always,  f o r  
a  g i v e n  t ime ,  T, on t h e  f l i c k e r  l e v e l ,  and we always have an un- 
c e r t a i n t y  t h a t  i s  g i v e n  a s  t h e  number o f  samples. For  t h e  l a s t  
p o i n t  you measured, you have o n l y  two samples; so you have 2000 p e r -  
c e n t  e r r o r  as  t h e  u n c e r t a i n t y .  

I t h i n k  i t  would  be an i n t e r e s t i n g  e x e r c i s e  t o  r e p e a t  t h e  c a l -  
c u l a t i o n  u s i n g  t h e s e  e s t i m a t i o n s  and u s i n g  y o u r  process.  Very 
p r o b a b l y  b o t h  w i l l  g i v e  v e r y  s i m i l a r  r e s u l t s  and b o t h  can be used. 
Tha t  would be i n t e r e s t i n g ,  I t h i n k .  

MR. FELL: 

I t h i n k  you a r e  r i g h t .  T h i s  i s  j u s t  one way t h a t  you c o u l d  do t h i s  
app rox ima te  method, those  A l l a n  v a r i a n c e s .  They a r e  s p e c i f i e d  f o r  
a c l o c k  and a r e  o n l y  an a p p r o x i m a t i o n  o f  a c t u a l  performance, b u t  f o r  
a l o n g  t i m e  peop le  have i g n o r e d  t h i s  t y p e  o f  r e s i d u a l  e r r o r  wh ich  i s  
l e f t  i n  t h e  e s t i m a t i o n  problem. And I t h i n k  t h a t  because we a r e  now 
t r y i n g  t o  g e t  down t o  such smal l  e r r o r s ,  namely b a s e l i n e  e r r o r s  of  
l e s s  t h a n  1 0  c e n t i m e t e r s ,  t h a t  we a r e  go ing  t o  have t o  t a k e  a second 
l o o k  a t  o u r  mode l i ng  and make sure  t h a t  i t  i s  s u f f i c i e n t  f o r  t h e  
problems t h a t  we a r e  address ing .  

Otherwise t h e  parameter  o f  s t a t i s t i c s  wh ich  we g e t  o u t  o f  t h e  
e s t i m a t i o n  a l g o r i t h m  a r e  g o i n g  t o  be t o o  o p t i ~ i s t i c .  

DR. V I C T O R  REINHARDT, NASA/Goddard 

You a l s o ,  i f  you do y o u r  convers ions  t o  y o u r  range s t a t i s t i c s ,  o r  
range rate  s t a t i s t i c s ,  u p  f r o n t  you w i l l  f i n d  t h a t  y o u r  range r a t e  
e s t i m a t o r  i s  one of t h e  we igh ted  A l l a n  v a r i a n c e s ,  and you can j u s t  
use t h e  t a b l e s  t h a t  a r e  p u b l i s h e d  f r o m  c o n v e r t i n g  t o  t h e  z e r o  dead 
t i m e  A l l a n  v a r i a n c e  t o  t h e  A l l a n  v a r i a n c e  w i t h  dead t i m e s  t o  g e t  
y o u r  range s t a t i s t i c s .  Tha t  a l l  combined w i t h  some f a c t o r  l i k e  C 

r 



And you can do t h i s  not  even w i t h  a  hand c a l c u l a t o r  on t h e  
back o f  an envelope, do t h e  same t h i n g  j u s t  by l o o k i n g  up the  NBS 
p u b l i c a t i o n s  on the var ious  weighings f o r  the var ious  models s ince  
a l l  of t h e  frequency standards t h a t  we use breakup i n t o  we l l  de- 
f i ned  regimes we have, you know, a  w e l l  de f ined  para1 l e l .  


